
Modeling and Validating Interaction
Aspects in UML

Jon Whittle, QSS/NASA Ames
João Araújo, Universidade Nova de Lisboa
Dae-Kyoo Kim, Colorado State University

Aspects at Use-Case Level

• Why?
– Separate cross-cutting requirements

– Avoid tangled requirements documentation

– Facilitate requirements change

– Support clear thinking process

• Clear thinking process
– Represent aspects/non-aspects separately

– Weave aspects/non-aspects

– Execute aspects/non-aspects for validation

Represent Aspects/Non-Aspects

• Focus on interactions (UML Sequence
Diagrams)
ÿ Non-aspects are just sequence diagrams

• Aspects are Interaction Pattern Specifications
(Kim et al.)

• Weaving is specialized composition

• Execution is translation to state machines
(Whittle & Schumann algorithm)

Interaction Pattern Specifications

• Specialization of the UML metamodel
– each element is a role (a UML metaclass

with additional properties)

• Instantiate by assigning UML model
elements to each role

• Conformance: the assigned model
elements satisfy the properties of that
role

Example IPS

Car parking system: driver gets a ticket from entry machine after pressing a
button. Driver parks. On leaving, driver inserts ticket into exit machine and pays.

Driver |Machine Supervisor

|Action(|a)
|CannotRespond

alertSupervisor(|a)

displayErrorMessage

roles in red

Weaving

a

d

b

|a

c

|b

IPS, I Sequence
diagram, S

a

c

b

a
c

b

d

 a

c

b

d

alt

 � �

� �

� Instantiate

� Weave

� Composition operator

Car parking example

Driver
Lot Exit
Machine Data RecordBarrier

insertTicket(t)

checkTicket(t)

recordTransaction(t)
ejectTicket

open

takeTicket

drive
sensorValidatedExit

close

Instantiation

Driver |Machine Supervisor

|Action(|a)
|CannotRespond

alertSupervisor(|a)

displayErrorMessage

|Machine binds to Lot Exit Machine
|Action binds to insertTicket
|a binds to t
|CannotRespond binds to timeout

Composed Interaction

Barrier Driver
Lot Exit

Machine Data Record Supervisor

drive

insertTicket(t)

checkTicket(t)

ejectTicket

takeTicket

sensorValidatedExit

recordTransaction(t)

open

close

timeout
alertSupervisor(t)

displayErrorMessage

red = former
roles

alt

Composition Operators

• OR: alternative interactions with choice
point to decide

• AND: interactions occur concurrently

• IN: insert one interaction inside the
other

• Others: further work…

Validation of
Composed Interactions

• Use Whittle & Schumann algorithm to
transform composed interactions into a set of
(executable) state machines

• Whittle & Schumann:
– State machine generated for each participant

involved in the interaction

– For each participant:
• Incoming message becomes a trigger in the state machine

• Outgoing message becomes an action in the state
machine

• Interactions can be joined using “state labels”

Example: state machine
generated

entry/
 checkTicket (t)

insertTicket(t)

timeout / alertSupervisor (t);
 displayErrorMessage

 / recordTransaction(t);
 ejectTicket; open

takeTicket

sensorValidatedExit/ close

Summary

• Representation/Instantiation/Weaving of
aspectual/non-aspectual interactions
(UML sequence diagrams)

• Translation to set of state machines for
validation purposes

• Future work: how to feedback results of
validation to augment or correct the
interaction models

